Exact Penalty Methods

نویسنده

  • G Di Pillo
چکیده

Exact penalty methods for the solution of constrained optimization problems are based on the construction of a function whose unconstrained minimizing points are also solution of the constrained problem. In the rst part of this paper we recall some deenitions concerning exactness properties of penalty functions, of barrier functions, of augmented Lagrangian functions, and discuss under which assumptions on the constrained problem these properties can be ensured. In the second part of the paper we consider algorithmic aspects of exact penalty methods; in particular we show that, by making use of continuously diierentiable functions that possess exact-ness properties, it is possible to deene implementable algorithms that are globally convergent with superlinear convergence rate towards KKT points of the constrained problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis

We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...

متن کامل

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

متن کامل

Automatic Decrease of the Penalty

This paper presents an analysis of the involvement of the penalty parameter in exact penalty function methods that yields modiications to the standard outer loop which decreases the penalty parameter (typically dividing it by a constant). The procedure presented is based on the simple idea of making explicit the dependence of the penalty function upon the penalty parameter and is illustrated on...

متن کامل

On the Role of the Mangasarian-fromovitz Constraint Qualiication for Penalty-, Exact Penalty-and Lagrange Multiplier Methods

In this paper we consider three embeddings (one-parametric optimization problems) motivated by penalty, exact penalty and Lagrange multiplier methods. We give an answer to the question under which conditions these methods are successful with an arbitrarily chosen starting point. Using the theory of one-parametric optimization (the local structure of the set of stationary points and of the set o...

متن کامل

Penalty Methods for a Class of Non-Lipschitz Optimization Problems

We consider a class of constrained optimization problems with a possibly nonconvex non-Lipschitz objective and a convex feasible set being the intersection of a polyhedron and a possibly degenerate ellipsoid. Such problems have a wide range of applications in data science, where the objective is used for inducing sparsity in the solutions while the constraint set models the noise tolerance and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994